

PASSION • INNOVATION • PERFORMANCE

Materials Properties Guide

Contents

Mechanical Properties	2
Tensile Properties	2
Flexural Properties	3
Compressive Properties	3
Creep Properties	3
Fatigue Properties	4
Impact Properties	4
Thermal Properties	5
Heat Deflection Temperature	6
Relative Thermal Index	6
Heat Aging	6
Coefficient of Linear Thermal Expansion	7
Thermal Stability	7
Rheology	8
Riebiogy	0
Flammability and Combustion Properties	9
Ignition	9
Flammability	9
Smoke Density	9
Smoke, Toxicity and Corrosivity	9
Electrical Properties	10
Volume Resistivity	10
Surface Resistivity	10
Dielectric Properties	10
Static Decay Properties and Dissipative Materials	12
Tribology	13
Friction and Wear	13
Block on Ring	13
Thrust Washer	14
Limiting Pressure and Velocity	15
Environmental Resistance	16
Hydrolysis Resistance	16
Gas and Liquid Permeation	16
Chemical Resistance	17
Radiation Resistance	18
Outgassing Characteristics	18
Approvals and Specifications	19
Materials of Choice	20

With over 30 years of focus and experience Victrex Polymer Solutions, a division of Victrex plc, is the world's leading manufacturer of high performance polyaryletherketones (PAEK) including VICTREX® PEEK polymer. Our product portfolio is one of the broadest range of polyaryletherketones on the market. We work with our customers and end users to deliver technology driven solutions to meet the challenges and opportunities they face and help them to achieve new levels of cost savings, quality and performance in the aerospace, automotive, electronics, energy, industrial, medical and semiconductor markets.

VICTREX PEEK polymer provides exceptional performance over a wide range of temperatures and extreme conditions. It is a linear, aromatic, semi-crystalline polymer widely regarded as one of the highest performing thermoplastics in the world. It provides a unique combination and range of high performance properties.

In addition to VICTREX PEEK polymer, we have two additional PAEK polymers, VICTREX[®] HT[™] polymer and VICTREX[®] ST[™] polymer that can maintain mechanical performance at increasingly higher temperatures in hostile environments.

When an end use application demands a combination of three or more performance properties our PAEK offer a tremendous material advantage with unmatched versatility. This ability to combine properties without sacrificing performance allows our materials to perform in a wide variety of operating conditions and broad range of applications.

Why Victrex PAEKs?

- Unique combination of properties
- Extensive grade range
- Processed using conventional processing equipment
- Conforming to global approvals and specifications
- Product consistency
- Security of supply
- Supported by expert technical teams globally

High Temperature Performance

Excellent high temperature performance, with glass transition temperatures ranging between 289°F - 324°F and melting temperatures between 649°F - 729°F.

Mechanical Strength & Dimensional Stability

Excellent strength, stiffness, long-term creep and fatigue properties.

Wear Resistance

High abrasion and cut through resistance combined with a low coefficient of friction.

Chemical Resistance

Withstands a wide range of acids, bases, hydrocarbons and organic solvents.

Hydrolysis Resistance

Low moisture absorption, resistant to steam, water and sea water, with low permeability.

Victrex materials are offered with different melt viscosities to meet specific thermoplastic process requirements: melt viscosity increases from the high flow PEEK 90 polymer to the standard viscosity PEEK 450 polymer. Products may be melt filtered into unfilled pellets,

Table 1: Victrex Polymer Solutions' Product Portfolio

Electrical Performance

Electrical properties which are maintained over a wide frequency and temperature range.

Low Smoke and Toxic Gas Emission

Inherently flame retardant without the use of additives. Low toxicity of combustion gases.

Purity

Exceptionally low outgassing and extractables.

Environmentally Friendly

Lightweight, fully recyclable, halogen free, and RoHS compliant.

Ease of Processing

One of the highest performing melt processable materials available today using conventional thermoplastic processing equipment.

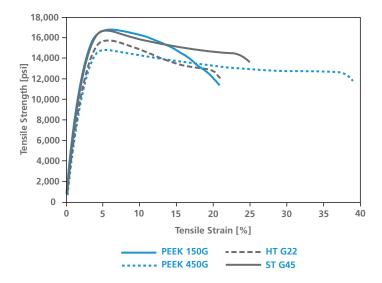
The broadest portfolio of polyaryletherketones, including VICTREX[®] PEEK polymer. Victrex materials provide exceptional performance over a wide range of temperatures and extreme conditions.

Victrex APTIV[®] film provides all of the properties of VICTREX PEEK polymer in a flexible format and is regarded as the most versatile and high performing thermoplastic films available.

Eco-friendly VICOTE[®] coatings, available in powder and aqueous dispersions, deliver resistance to high temperatures, exceptional scratch and wear resistance, high strength and durability.

milled into fine powders, or compounded using a variety of fillers as well as being available in finished forms such as stock shapes, fibers, films, pipe and coatings. Table 1 gives an overview of the Victrex Polymer Solutions' product portfolio.

	VICT	REX [®] PEEK Polymers	
Melt Viscosity - Polymer	90	150	450
Unfilled Coarse Powder	90P	150P	450P
Unfilled Fine Powder		150PF	450PF
		150XF	
		150UF10	
Unfilled Pellets	90G	150G / 150G903BLK	450G / 450G903BLK
Glass Fiber Filled	90GL30	150GL15	450GL15
	90GL60	150GL20	450GL20
		150GL30 / 150GL30BLK	450GL30 / 450GL30BLK
Carbon Fiber Filled	90CA30	150CA30	450CA20
	90HMF20		450CA30
	90HMF40		450CA40
Wear Grades		150FC30	450FC30
		150FW30	450FE20
	VICTREX [®] HT [™] Polymers	VICTREX® S	T™ Polymers
Unfilled Coarse Powder	HT P22 / P45	ST	P45
Unfilled Fine Powder	HT P22PF / P45PF		
Unfilled Pellets	HT G22 / G45	ST	G45
Glass Fiber Filled	HT 22GL30	ST 45	5GL30
Carbon Fiber Filled	HT 22CA30	ST 45	GCA30
	VICTR	EX® Specialty Products	
Depth-Filtered Pellets	151G / 38	31G Unfilled	d VICTREX PEEK for extreme purity
		require	ments (fiber spinning, wire coating)
Premium Wear Grades	WG101, W	G102 Outper	forming standard wear grades at
		higher	speed / load applications
Electrostatically Dissipative	ESD101, ES	D201 Meetin	g specific ranges of resistivity


MECHANICAL PROPERTIES

Victrex materials are widely regarded as the highest performing thermoplastic polymers with good retention of mechanical properties over a wide range of temperatures and conditions.

TENSILE PROPERTIES

The tensile properties of Victrex polymers exceed those of most engineering thermoplastics. Tensile performance was evaluated according to ISO 527 and a comparative tensile plot of unfilled Victrex polymers is shown in Figure 1. These unfilled grades show ductile behavior with a yield point of approximately 5% elongation and a tensile strength exceeding 14,000 psi.

Figure 1: Typical tensile stress-strain curves for unfilled Victrex polymers

Adding fillers increases strength and stiffness as shown in Figure 2 for a range of PEEK compounds. Filled compounds typically do not exhibit a yield point and therefore break in a brittle way. Tensile modulus, strength and elongation vary significantly depending on the type of filler and filler content.

Figure 3 summarizes the ranges of tensile strength for unfilled, glass fiber-filled and carbon fiber-filled materials as well as for wear grades.

Figure 2: Typical tensile stress-strain curves for PEEK compounds (450G for comparison)

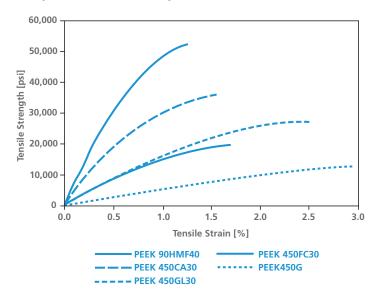
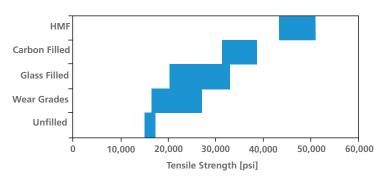
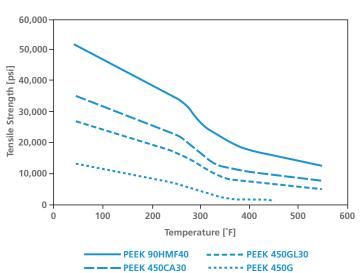
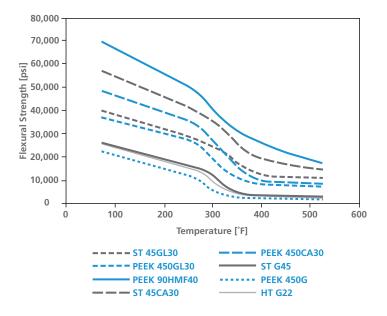




Figure 3: Ranges of tensile strength of Victrex materials

Victrex materials are used to form structural components which experience or continually operate at high temperatures. Figure 4 shows a plot of tensile strength versus temperature for a range of Victrex materials and demonstrates a good retention of mechanical properties over a wide temperature range.

Figure 4: Tensile strength versus temperature of various Victrex materials


victrex

FLEXURAL PROPERTIES

Victrex materials exhibit outstanding flexural performance over a wide temperature range. Flexural strength was evaluated according to ISO 178 with the results plotted versus temperature in Figure 5.

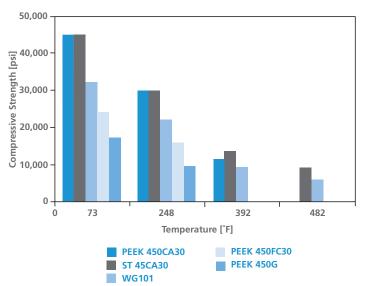
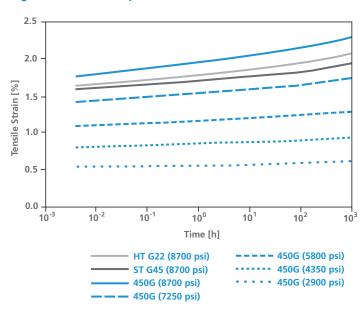

As for all semi-crystalline polymers, flexural strength of Victrex materials is temperature dependent, with a pronounced step-change going through the glass transition (T_g). Even so, values of flexural strength of filled materials can achieve in excess of 29,000 psi at temperatures above T_g . The improvement in flexural strength retention in these graphs is explained by the increasing T_g going from PEEK, HT to ST.

Figure 5: Flexural strength versus temperature of various Victrex materials

COMPRESSIVE PROPERTIES


Compressive strength was evaluated in accordance with ISO 604 at temperatures up to 480°F. Figure 6 shows compressive strength versus temperature for a range of Victrex materials with focus on grades typically used in wear and extreme high pressure applications, and unfilled PEEK 450G as reference. Figure 6: Compressive strength versus temperature of a range of Victrex materials

CREEP PROPERTIES

Victrex materials have outstanding creep resistance and may sustain large stresses over a useful service life with little time-dependent deformation. Creep is defined as the deformation observed versus time under a constant applied stress. Tensile creep was evaluated according to ISO 899 at 73°F over a period of 1000h.

Tensile creep results for PEEK 450G at 73°F are shown in Figure 7 for several constant stress levels ranging from 2,900 psi to 8,700 psi. HT and ST have been included at 8,700 psi for comparison. The instantaneous deformation (strain at short creep-times) correlates to the stress-strain relationship derived in a tensile test, accordingly creep curves start at higher elongations with increasing applied loads. HT and ST exhibit slightly lower creep at 8,700 psi compared to PEEK 450G.

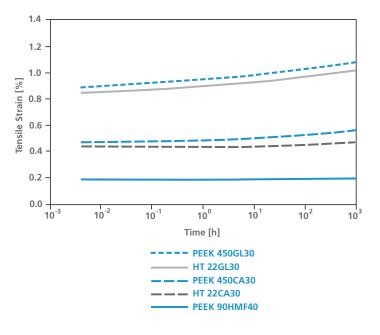
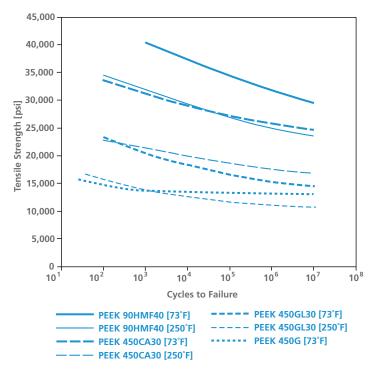


Figure 7: Tensile creep of PEEK 450G, HT and ST at 73°F

Adding fillers to unfilled polymer enhances mechanical performance such as strength and stiffness and therefore creep performance, with the increase dependent upon the type of filler and filler content. The high strength and stiffness characteristics of PEEK and HT compounds under conditions of creep are shown in Figure 8 at 73°F and a constant load of 13,050 psi.

PEEK 90HMF40, which has the highest strength and stiffness properties of all Victrex materials, demonstrates outstanding creep resistance. PEEK 450CA30 and PEEK 450GL30 are showing somewhat higher measurable time dependent creep at 13,050 psi compared to PEEK 90HMF40. HT compounds showed slightly improved creep performance opposed to PEEK polymer-based equivalents.

Figure 8: Tensile creep of PEEK and HT compounds at 73°F and constant stress of 13,050 psi



FATIGUE PROPERTIES

Fatigue may be defined as the reduction in mechanical properties during continued cyclic loading. Tensile fatigue was evaluated using ISO tensile bars stressed at 5Hz with a sine wave between 10 and 100% of predefined loads.

Figure 9 shows the excellent fatigue performance at 73°F and 250°F for a range of Victrex materials. PEEK 450G shows very little decay in a tensile fatigue situation at 73°F. Adding fillers to unfilled PEEK enhances fatigue stress levels significantly.

Figure 9: Tensile fatigue of a range of Victrex materials at 5Hz at 73°F and 250°F

IMPACT PROPERTIES

Impact testing is used to investigate the behavior of materials under specific impact conditions and for estimating their toughness within the limitations inherent to the test conditions. There is a vast variety of test methods, low energy studies performed using pendulum geometry and high energy studies where failures are evaluated using falling weight apparatus. Pendulum geometry may use a cantilever support as in Izod impact testing (ISO 180) or a 3-point-bending configuration as in Charpy impact testing (ISO 179); with both using notched or unnotched impact bars.

Figures 10 and 11 show Izod and Charpy impact strength of edgewise loaded samples for a range of Victrex materials, notched and unnotched. Unfilled Victrex materials are extremely tough and do not break in unnotched configuration in Izod or Charpy impact testing. Adding fillers to PEEK enhances the notched toughness.

Figure 10: Izod impact strength of various Victrex materials at 73°F

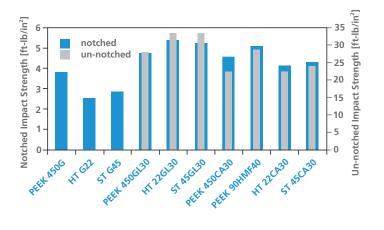
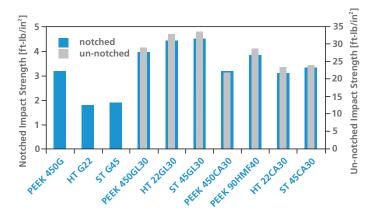
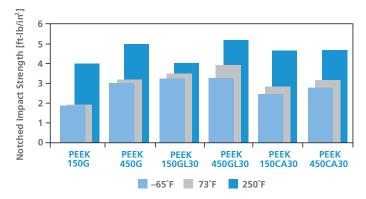
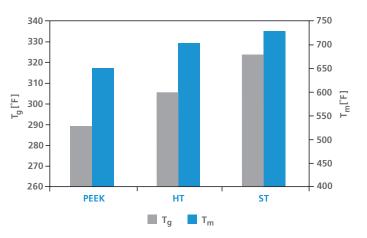




Figure 11: Charpy impact strength of various Victrex materials at 73°F

Impact properties are temperature dependent as shown in Figure 12 for a range of Victrex materials. An increase in toughness is measured as temperature increases from -65°F to 250°F.



VICTREX® PEEK polymer specified for aircraft landing gear hubcaps withstanding impacts of flying debris and has excellent environmental resistance in harsh conditions.

THERMAL PROPERTIES

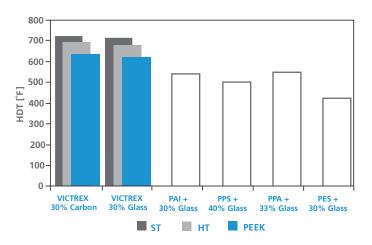

Victrex polymers have glass transition (T_g) and crystalline melting temperatures (T_m) in the range shown in Figure 13. Due to the semi-crystalline nature of these polymers a high degree of mechanical properties is retained close to their melting temperatures.

Figure 13: The glass transition (T_g) and crystalline melting temperatures (T_m) for Victrex polymers determined by differencial scanning calorimetry (DSC) ISO 11357

HEAT DEFLECTION TEMPERATURE

The short term thermal performance of polymers may be characterized by determining the heat deflection temperature (HDT, ISO 75) at which a defined deformation is observed in a sample under constant applied stress (264 psi) at constant heating rate. Victrex materials have excellent stiffness at high temperatures and correspondingly have high HDT values when compared with other high performance polymers.

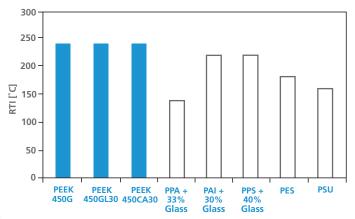
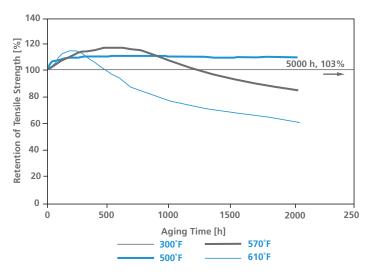
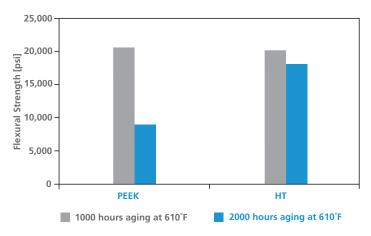


Figure 14: Heat deflection temperature (at 264 psi) for Victrex materials and other high performance polymers

RELATIVE THERMAL INDEX

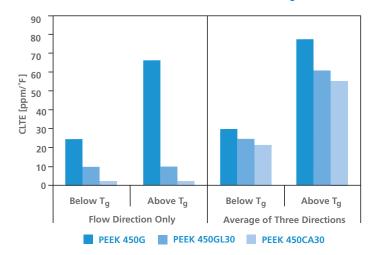
Polymers are subject to thermal degradation at elevated temperatures. These effects may be evaluated by measuring the relative thermal index (RTI) as defined by Underwriters Laboratories (UL746B). This test determines the temperature at which 50% of a particular material property is retained compared to a control material whose RTI is already known (RTI typically corresponds to extrapolated times between 60,000 and 100,000 hours). The UL RTI rating for Victrex materials compared to other high performance polymers are shown in Figure 15.


Figure 15: Relative thermal index (RTI) – mechanical without impact – for a range of high performance materials


HEAT AGING

The excellent retention of mechanical properties at various aging temperatures in air for unfilled PEEK was determined as a measure of thermal aging resistance. Results are shown in Figures 16 and 17. The initial increase in tensile strength observed in Figure 16 is a result of increased crystallinity due to annealing. The subsequent decrease in strength with time is due to thermal degradation.

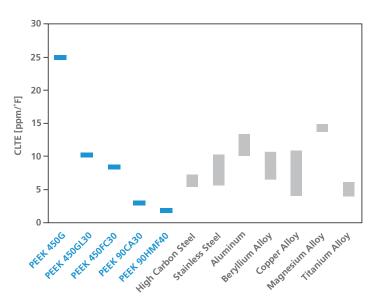
Figure 16: Retained tensile strength of unfilled PEEK versus conditioning time at high temperatures



COEFFICIENT OF LINEAR THERMAL EXPANSION

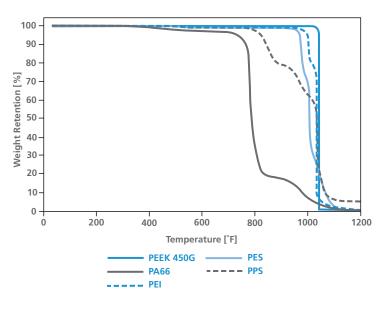
The coefficient of linear thermal expansion (CLTE) was measured according to ISO 11359. Materials were studied in three axes to fully characterize the anisotropic effects of filled grades. Figure 18 shows the variation in CLTE for standard PEEK grades in the flow direction and as an average of all three directions. Unfilled grades such as PEEK 450G are nearly isotropic and have little difference in expansion in different directions. However, glass fiber and carbon fiber-filled grades are anisotropic and as such have low expansion in the flow direction but significantly higher expansion transverse to flow. Also, there is a significant increase in CLTE as temperature is increased above T_g, with the difference lower for compounds, particularly in the flow direction.

Figure 18: Coefficient of linear thermal expansion (CLTE) for various Victrex materials below and above T_{α}



VICTREX® PEEK polymer was selected in a cooling jacket application due to the material's dimensional stability, low radio frequency (RF) losses, and its ability to be precisely machined resulting in a new 1-part design.

The CLTE of a range of Victrex materials below T_g in the flow direction are compared to various metals in Figure 19.

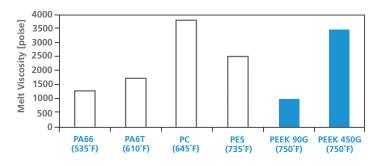

Figure 19: Coefficient of linear thermal expansion (CLTE) for various Victrex materials versus metals (flow direction, below T_g)

THERMAL STABILITY

Thermogravimetry (TGA) illustrates the thermal stability of PEEK in air. Degradation only starts above 1000°F with insignificant levels of outgassing at lower temperatures as can be seen in the comparative plot of PEEK 450G and other high performance polymers in Figure 20.

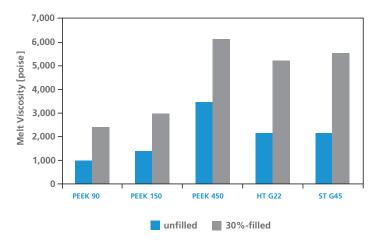
Figure 20: Thermogravimetry (TGA) analysis of PEEK and other high performance polymers

RHEOLOGY


Like most thermoplastic materials the melt viscosity of Victrex materials is temperature dependent and shows shear thinning. A comparative plot of melt viscosity at a shear rate of 1000/s for a range of high performance polymers is shown in Figure 21. Although PEEK has one of the highest processing temperatures, the melt viscosity of PEEK 450G is in the range of polycarbonate melts.

Melt viscosity depends on base resin, filler type and filler level. Materials based on PEEK 450 have higher viscosity than those based on PEEK 150 and PEEK 90. Blending Victrex polymers with fillers such as glass or carbon fiber leads to higher viscosities as can be seen from Figure 22. Based on the high flow grade PEEK 90G compounds with up to 60 weight-% filler content are possible having a lower viscosity than 30%-filled compounds of standard viscosity PEEK 450G. The wear grades with 30 weight-% fillers have viscosities similar to other 30%-filled products shown in Figure 22.

Rheology of Victrex polymers is suitable for standard injection molding as well as for critical melt processing technologies such as extrusion of APTIV¹⁼ films.


Figure 21: Melt viscosity at a shear rate of 1000/s at typical processing temperatures for a range of thermoplastics

VICTREX® PEEK polymer replaced steel in high-speed rotors and intricate bearing shells for dispersion instruments used in the medical industry.

Figure 22: Melt viscosity (1000/s; 750°F) of various Victrex materials (ST at 790°F)

FLAMMABILITY AND COMBUSTION PROPERTIES

Flammability can be defined as the ability of a material to support combustion, a flammable material being one which is easily ignited and burns rapidly.

Victrex materials are inherently resistant to combustion, and when they do burn, they produce few toxic or corrosive gases compared with other polymers. The addition of fillers (such as glass or carbon fiber) further improves Victrex materials inherent resistance to combustion.

IGNITION

The glow wire test (IEC 695-2-1) assesses the material's resistance to ignition as well as the ability to self extinguish. Unfilled PEEK and its compounds achieve a glow wire flamibility index (GWF) 1,760°F rating – they ignite at 1,760°F but self extinguish on removal of the glow wire.

FLAMMABILITY

The most widely accepted measure of flammability for plastic materials is the UL94 vertical burn test which assess the ability of a plastic material to self extinguish once ignited – it is not a measure of the resistance to ignition. Unfilled PEEK 450G achieves UL94 V-0 rating at 0.060". Glass or carbon fiber-filled grades achieve UL94 V-0 ratings at 0.020" over a wide range of filler levels.

SMOKE DENSITY

Burning plastics generate smoke, generally from incomplete combustion. Smoke reduces visibility, making it more difficult to escape from a fire. The smoke levels of Victrex materials are over 95% lower than the limits specified in aviation flammability standards (example: Boeing BSS 7238).

SMOKE, TOXICITY AND CORROSIVITY

Burning plastics generate a range of toxic fire gases, including hydrogen cyanide (HCN), sulphur gases (SO₂, H₂S), nitrous gases (NO, NO₂) and carbon monoxide (CO). These can be more lethal than the fire itself, as they can incapacitate people rendering them unable to escape from the fire. Corrosive fire gases such as hydrogen fluoride (HF) and hydrogen chloride (HCl) will permanently damage sensitive electronic equipment.

The combustion products of Victrex materials are predominantly carbon dioxide (CO_2) and carbon monoxide (CO). The amount of CO is less than 5% of the limits specified in aviation toxicity standards (example Boeing BSS 7239, Airbus ATS-1000).

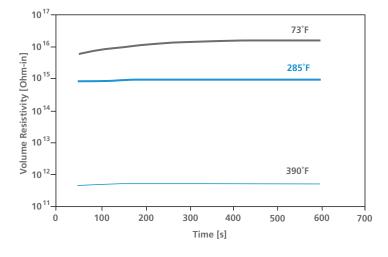
Toxicity data is usually reported as an amount relative to the amount of gas considered to be fatal to humans. Table 2 shows the result of tests carried out in NBS smoke chamber, which confirms that the only toxic gas generated in significant quantities is carbon monoxide.

Flame resistant VICTREX® PEEK polymer replaces metal in aerospace P-clamps, saving weight and reducing installation time.

	Test without Flame [ppm]		Test with F	lame [ppm]	Maximum Allowable [ppm]		
	after 90s	after 4min	after 90s	after 4min	after 90s	after 4min	
Carbon Monoxide (CO)	Trace 1		30	100	3000	3500	
Hydrogen Chloride (HCl)	0	0	0	0	50	500	
Hydrogen Cyanide (HCN)	0	0	0	0	100	150	
Sulphur-Containing Gases (H ₂ S, SO ₂)	0 0		0	0	50	100	
Oxides of Nitrogen (NO _x)	0	0	0.5	1	50	100	
Hydrogen Fluoride (HF)	0	0	0	0	50	50	

Table 2: Toxicity of Combustion Gases from NBS Smoke Chamber Test

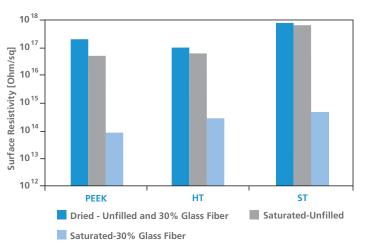
ELECTRICAL PROPERTIES


Victrex materials are often used as an electrical insulator with outstanding thermal, environmental resistance and mechanical performance.

VOLUME RESISTIVITY

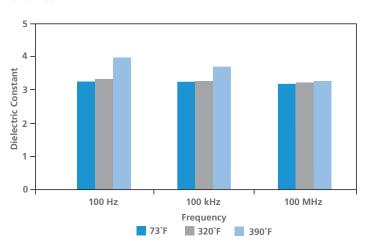
The volume resistance of a material is defined as the ratio of potential difference [volts] parallel to the current in a material, to the current density [amps].

As with all insulating materials, the change in resistivity with temperature, humidity, component geometry and time may be significant and must be evaluated when designing for operating conditions. These effects are plotted for PEEK 450G in terms of volume resistivity versus electrification time and temperature in Figure 23. HT displays similar volume resistivity properties to PEEK 450G under these conditions.


Figure 23: Volume resistivity versus electrification time at various temperatures for PEEK 450G

SURFACE RESISTIVITY

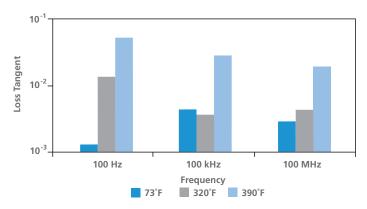
The surface resistance of a material is defined as the ratio of the potential difference between two electrodes forming a square geometry on the surface of a specimen and the current which flows between them. Victrex materials have a surface resistivity typical of high performance polymers. Figure 24 shows the surface resistivity for Victrex materials tested in accordance with American National Standards Institute's ESD test method ESD S11.11 and the impact of moisture. In all cases the resistivity following immersion is reduced. Larger changes are seen for the filled compounds but PEEK, HT and ST still remain insulating.


Figure 24: Influence of moisture uptake on the surface resistivity of Victrex materials

DIELECTRIC PROPERTIES

The dielectric constant (or relative permittivity) is the ratio of a material's permittivity to the permittivity of a vacuum. In polymers the dielectric constant is a function of frequency and temperature. Figure 25 shows the dielectric constant for PEEK 450G over a range of temperatures and frequencies.

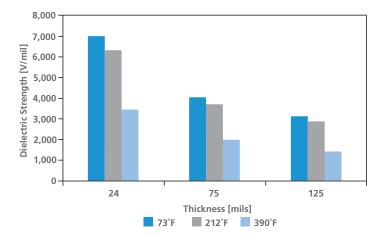
Figure 25: Dielectric constant of PEEK 450G at temperatures between 73°F and 392°F and frequencies between 100Hz and 100MHz

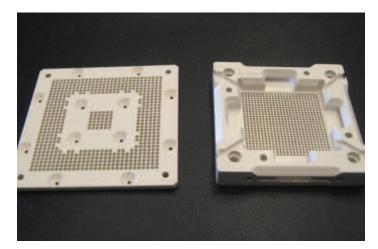


The loss tangent (dissipation factor) is expressed as the ratio of the power loss in a dielectric material to the power transmitted through it.

The loss tangent for PEEK 450G over a range of temperatures and frequencies is shown in Figure 26. Results are comparable to other high performance materials.

Figure 26: Loss Tangent of PEEK 450G at temperatures between 73°F and 392°F and frequencies between 100Hz and 100MHz





VICTREX® PEEK polymer is being used for housings of aluminium electrolytic capacitors, meeting the requirements for lead-free soldering technologies in the electronics industry.

The dielectric strength is the voltage required to produce a dielectric breakdown in a material and is a measure of a material's electrical strength as an insulator. Apart from the material type the dielectric strength is also influenced by other factors including sample thickness and temperature. Figure 27 shows the dependency of dielectric strength on thickness and temperature in PEEK films.

VICTREX® PEEK polymer is enabling Back-End Test OEMs to enhance their performance with improved machinability to extremely fine pitches with low burr, excellent electrical properties including maintained dielectric properties over multiple cycles.

STATIC DECAY PROPERTIES AND DISSIPATIVE MATERIALS

The retention of a static charge on the surface of a material and the subsequent surface potentials are a concern in many electronic applications. Figure 28 demonstrates the response of three Victrex materials following exposure to a 9kV corona. The suitability of a material in a triboelectrical environment is indicated by the amount of charge that initially couples to the sample's surface and the time it takes to dissipate. The results show that PEEK 450G charges easier and decays slower. PEEK ESD101 is least susceptible to charging with the additional benefit of faster decay times [1/e refers to the time for the initial peak charge to decay to 36.8% of its value measured in seconds].

Wafer cassettes made with VICTREX[®] PEEK-ESD[™] polymer dissipate static charges in a controlled way, preventing damage to the wafer and preventing wafer contamination due to electrostatic attraction by reducing and preventing electrostatic accumulation.

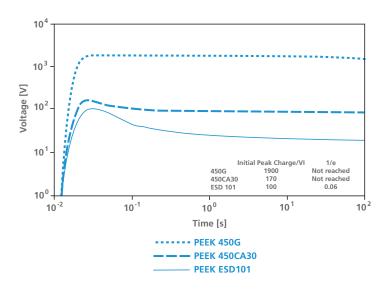
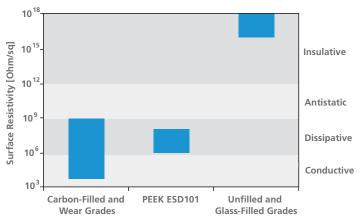



Figure 28: Static decay characteristics of PEEK 450G, 450CA30 and ESD101

In terms of resistivity, PEEK ESD101 is dissipative. It offers tight control of surface resistance within the important ESD region of 10⁶ and 10⁹.

Other Victrex materials do not offer tight control of surface resistivity, and are either insulating like unfilled or glass filled materials, or they show a large variability of surface resistance within the conductive to dissipative region like carbon-filled materials as shown in Figure 29.

Figure 29: Schematic representation of the resistivity of Victrex materials

Using VICTREX[®] PEEK polymer in the manufacture of connectors and sensors allows for excellent dielectric properties over a wide range of temperatures and frequencies in combination with dimensional stability through the lead-free soldering process, mechanical strength, wear resistance and compliance to RoHS.

TRIBOLOGY

Tribology is the branch of engineering that deals with the interaction of contacting surfaces in relative motion under applied load; their design, friction, wear and lubrication.

Victrex materials are used for tribological components due to their outstanding resistance to wear under high pressure and velocity conditions.

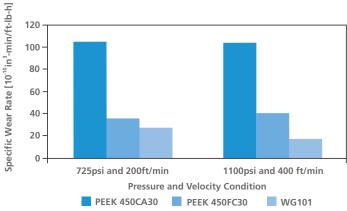
FRICTION AND WEAR

Wear is the progressive loss of material from surfaces in relative motion to one another. Wear may make the surface smoother or rougher, due to a range of processes including surface fatigue, abrasive wear and adhesive wear. The lower the wear rate, the better the resistance to wear in that specific wear scenario. The wear rate is defined as the rate of height loss in a specific wear environment, but is often reported as specific wear rate or wear factor (wear rate / (pressure x velocity).

The wear rate is influenced by the test conditions (pressure and velocity), it is therefore vital to know whether the wear factor is from high speed / low pressure or from low speed / high pressure testing.

Friction is the resistance to sliding motion between two surfaces. It is a dimensionless property (μ), varying with velocity, pressure, temperature, lubrication, the roughness and nature of the contacting surface.

Frictional heating increases the temperature of the component especially in situations where there is limited possibility for heat to be removed from the system. As temperature increases above T_{α} , for a given material, there is a corresponding increase in wear rate (the material becoming softer).


BLOCK ON RING

The block-on-ring test geometry (ASTM G137) measures the wear resistance of polymers under dry sliding conditions. This configuration is better suited for measurement of steady state wear rates at high loads and speeds which would lead to overheating (premature failure by melting) in the ASTM D3702 thrust washer configuration. Despite the differences in testing configurations, a good correlation in the ranking of wear resistance is achieved between the two methods.

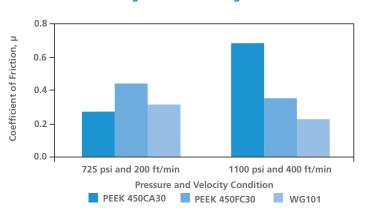
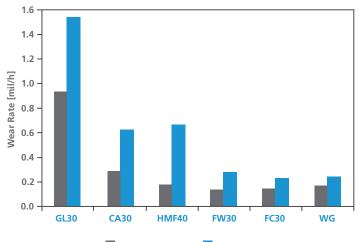

block-on-ring tests on a range of Victrex materials over the pressure times velocity (PV) range of 145,000 -435,000 psi ft/min show that wear grades exhibit significantly lower wear rates than the PEEK 450CA30 reference as can be seen in Figure 30.

Figure 30: Specific wear rate of various Victrex materials

tested using the block-on-ring method

There is little difference in the coefficient of friction at the low velocity and pressure condition. The coefficient of friction of lubricated compounds reduces at higher velocity and pressure conditions, but increases for the non-lubricated PEEK 450CA30 as shown in Figure 31.

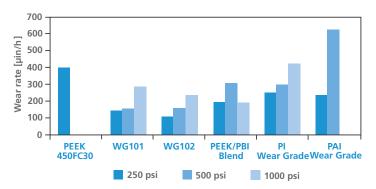
Figure 31: Coefficient of friction of various Victrex materials tested using the block-on-ring method


THRUST WASHER

The ASTM D3702 thrust washer test method (wear rate and coefficient of friction of materials in self-lubricated rubbing contact) is widely used in the automotive industry to compare and rank polymers.

Tests carried out at speeds of 200 - 800 ft/min loads of 50 - 95 psi (PV levels 10,000 - 75,000 psi ft/min) show the effect of formulation on wear performance for a range of Victrex materials and can be seen in Figure 32.

Carbon-fiber materials (CA and HMF codes) have reduced wear rate compared with glass-fiber compounds (GL codes). Materials with wear additives (FC, FW and WG codes) show the lowest wear rates over these test conditions.


Figure 32: Average wear rates at low PV levels of various Victrex materials tested using the thrust washer method

20,000 psi.ft/min 40,000 psi.ft/min

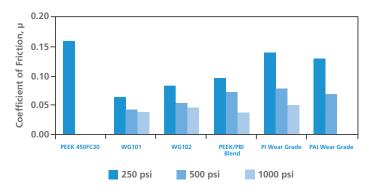

Figure 33 shows wear results from ASTM D3702 testing for Victrex compounds and other high performance polymers used in demanding tribological situations tested to destruction over speeds up 1200 ft/min. These results show that VICTREX WG polymers have better wear performance than other high performance materials.

Figure 33: Wear rate of various Victrex materials compared to other high performance materials tested using the thrust washer method at 1m/s test speed

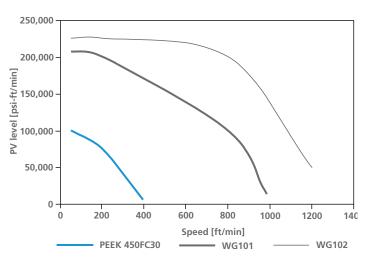

*VICTREX PEEK 450FC30 did not survive past the 250 psi test condition, the PAI wear grade did not survive past the 500 psi test condition Figure 34 shows that VICTREX WG polymers run with lower coefficient of friction than other high performance materials. Note that the coefficient of friction is four times higher than obtained with the block-on-ring (ASTM G137) method discussed previously.

Figure 34: Coefficient of friction of various Victrex materials compared to other high performance materials tested using the thrust washer method at 1m/s test speed

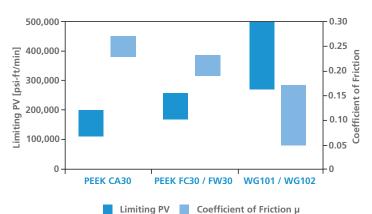
On the basis of ASTM D3702 testing, the application window for Victrex wear compounds is as shown in Figure 35. WG101 and WG102 can be used at significantly higher speeds and PV conditions than 450FC30. WG102 shows superior performance at the highest speeds tested.

LIMITING PRESSURE AND VELOCITY

Materials used for tribologically sensitive applications are often ranked according to their Limiting PV (Lpv). The Lpv is the maximum pressure and speed condition a material survives before exhibiting excessive wear, interfacial melting or crack growth from ploughing. Materials in critical tribological interactions may undergo either a pressure or a velocity induced failure. A pressure induced failure occurs when the loading of a sample increases to the point at which the sample undergoes fatigue crack growth from an asperity removal. A velocity induced failure occurs at the point when the relative motion between surfaces is such that thermal work at the material interface is sufficient to catastrophically increase the wear rate.

Automotive wear test scenarios include applications where high loads are expected with relatively low speeds (such as thrust washers) as well as ones were high speeds are expected with relatively low loads (such as dynamic seals). Under the same PV conditions, thrust washers take higher loads but rotate much slower than dynamic seals.

Testing was carried out with a modified ASTM D3702 thrust washer geometry to obtain Lpv data at low speeds / high loads and high speeds / low loads.


At low speeds / high loads, all materials tested survived beyond 2900 psi load 140 ft/min speed. Premium wear grades (WG101 and WG102) showed significantly lower coefficients of friction and counterface temperatures than standard Victrex wear materials (150FW30 and 450FC30).

At high speeds / low loads, the compounds showed three different performance categories (with the same ranking as the ASTM G137 block-on-ring test from Figures 30 and 31), see Figure 36. All samples failed when counterface temperatures exceeded 570°F.

Carbon-fiber reinforced, without wear additives (450CA30 and HT 22CA30), have low Lpv (under 200,000 psi) with high coefficient of friction (0.25).

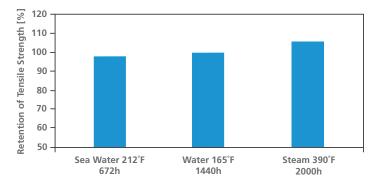
Standard wear grades (150FW30 and 450FC30) have higher Lpv 170,000 - 260,000 psi ft/min with lower coefficient of friction (0.20).

Premium wear grades (WG101, WG102) have significantly improved Lpv 1450-2600 psi ft/min with much lower coefficients of friction (0.05-0.15). WG102 survived beyond the maximum load / speed combination in this test.

VICTREX® PEEK polymer replaces iron in design of gears used in balance shaft modules to deliver durability, reliability and improve efficiency.

VICTREX® HT[™] polymer replaced metal with fluoropolymer coatings in printer split finger eliminating the need for secondary processing providing high temperature performance in a tribological environment.

Selected for its ability to withstand the high temperatures of the sterilization process and for its abrasion resistance, VICTREX® PEEK polymer replaces stainless steel valves and housings in beverage bottling machines.


ENVIRONMENTAL RESISTANCE

Victrex polymers exhibit excellent all-round environmental resistance which is retained at elevated temperatures. This means that they can be used to form components which are used in highly aggressive environments such as those in down-hole oil and gas applications or in parts which are exposed to repeated steam sterilization.

HYDROLYSIS RESISTANCE

Victrex high performance polymers are not attacked by prolonged exposure to water, sea water or steam which makes them an ideal choice for use in applications such as medical components, subsea equipment, and valve components.

Figure 37: Retention of tensile strength of PEEK as a function of time in water at 167°F, sea water at 212°F and steam at 392°F and 203 psi pressure

VICTREX® PEEK polymer is used as a high-performance liner for wear resistant production tubing in the oil and gas industry due to its resistance to chemicals and gas permeation.

GAS AND LIQUID PERMEATION

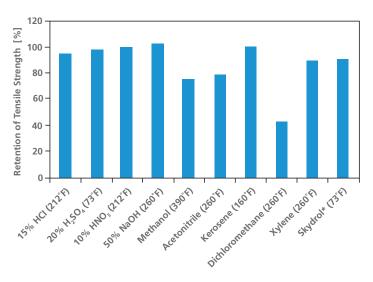
PEEK provides an effective barrier to the permeation of fluids and gasses. The solubility of fluids and gasses, the diffusion through and the permeation from PEEK polymer are up to several orders of magnitude lower than other commonly used polymers. Although there is increased polymer chain movement with increased temperature the solubility of gasses remains almost constant with increasing temperature and there is little change in any of the permeation parameters as the glass transition temperature is exceeded. Furthermore, the effect of high pressure is minimal: for example a 100-fold increase in pressure produces only a 10-fold increase in permeation rate. The low solubility of various fluids and gases in PEEK combined with its high modulus ensures that it is not susceptible to the effects of rapid gas decompression.

Table 3: Permeation rates of various common gases through 100µm crystalline PEEK film.

Gas	Permeation Rate cm³m²day¹
Carbon Dioxide	420
Helium	1600
Hydrogen	1400
Methane	8
Nitrogen	15
Oxygen	76
Water Vapor	4

Extensive studies of the permeation of gases such as hydrogen sulfide (H_2S) through PEEK pipes have shown that PEEK provides superior barrier properties compared to other high performance polymers as shown in Table 4.

Table 4: Comparative permeation data for PEEK and otherhigh performance polymers


Material	Material Temperature (°F)		Diffusion coefficient D (cm²s⁻¹)
PEEK	310°F	6.2 x 10 [°]	6.5 x 10 [∗]
PEEK	230°F	1.2 x 10 [.] ⁰	1.3 x 10 [∘]
PVDF	212°F	1.3 x 10⁵	Not available
PA 11	212°F	6.6 x 10 ⁻⁷	0.8 x 10⁵

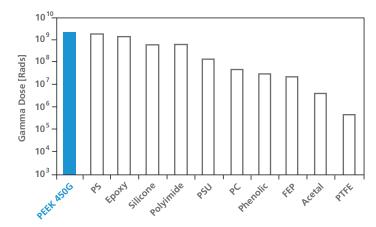
CHEMICAL RESISTANCE

VICTREX PEEK is widely regarded as having excellent resistance to a very wide range of chemical species over a range of temperatures, retaining high levels of mechanical properties and generally with little swelling or discoloration. As an indication of this broad chemical resistance, Figure 38 shows the retention of tensile strength for PEEK 450G after 28 days immersion in a range of chemicals at various temperatures.

A current chemical resistance list is available for download from our website www.victrex.com

Figure 38: Retention of tensile strength of PEEK 450G after 4 weeks immersion in a range of chemical species

*Skydrol is a registered trademark of Solutia Inc.



VICTREX® PEEK polymer used in patented PEEK-SEP membrane technology for the purification of natural gas, VOC abatement and filtration of aggressive solvents in demanding separation applications.

RADIATION RESISTANCE

Thermoplastic materials exposed to electromagnetic or particle based ionising radiation can become brittle. Due to the energetically stable chemical structure of Victrex materials, components can successfully operate in, or be repeatedly sterilised by, high doses of ionising radiation. A comparative bar chart of PEEK 450G and other high performance polymers is shown in Figure 39, where the recorded dose is at the point at which a slight reduction in flexural properties is observed. The data shows that Victrex materials have greater resistance to radiation damage than other high performance polymers.

Figure 39: The oxidative gamma radiation dose at which a slight deterioration of flexural properties occurs

VICTREX® PEEK polymer provides optimum dimensional stability and purity for wafer contact components in Front Opening Unified Pod (FOUP) silicon wafer technology.

OUTGASSING CHARACTERISTICS

Victrex materials are inherently pure with very small amounts of low molecular weight volatile organics. Table 5 shows data generated in accordance with ASTM E595. Victrex materials were heated to 255°F for 24h under a vacuum of 5x10⁻⁵ Torr. All values are expressed as a percentage of the weight of the test sample. ASTM E595 specifies acceptable limits for TML as 1.0% maximum and for CVCM 0.1% maximum.

Table 5: Outgassing characteristics of various Victrexmaterials

PEEK	%TML ¹	%CVCM ²	%WVR ³
450G	0.26	0.00	0.12
450GL30	0.20	0.00	0.08
450CA30	0.33	0.00	0.12

¹**TML** (total mass loss) – is the total mass of material that is outgassed from the test sample when maintained at a specific temperature for a specific time.

² **CVCM** (collected volatile condensable material) – is the quantity of outgassed matter from the test sample which is condensed and collected at a given temperature and time.

³ WVR (water vapor regained) – is the mass of water regained by the test sample after conditioning at 50% relative humidity at 73°F for 24 hours.

APPROVALS AND SPECIFICATIONS

Victrex materials are used extensively across a broad spectrum of applications including aerospace (commercial and defense), automotive, marine, industrial and energy (fossil fuel and renewable), where end-user approval is necessary to confirm compliance of the finished product to the end-users own standard or an international market sector standard. Specifications are met at various industry leaders such as Airbus, Boeing, Daimler AG and Bosch. Table 6 summarizes a number of important global approvals that Victrex materials meet.

Table 6: Summary of global approvals met by Victrex materials

WATER CONTACT		GENERAL			
WRAS - (BS 6920)	VICTREX PEEK 450G, 450GL30, 450CA30 and 450FC30 meet the WRAS, (Water Regulations Advisory Scheme) - effects on water quality to BS 6920 for non-metallics being suitable for contact with, and for the manufacture of components of	ISO 9001:2008	The management system of Victrex Manufacturing Ltd has been assessed and certified to ISO 9001:2008 for the design, manufacture and sale of high performance polyketones.		
DVGW - (W270)	water fittings for use in contact with cold and hot water up to 185°F for domestic purposes. VICTREX PEEK-unreinforced, GL30, CA30 and FC30 meet the DVGW-(German Association of Gas and Water), standard W270 for microbial enhancement on materials to come into contact with drinking water – testing and assessment.	REACH	Victrex polymers are exempt from the REACH registration requirements. Monomers used in the polymer manufacture have been pre-registered in accordance with the requirements of REACH. To the best of our knowledge at this time, Victrex products do not contain any SVHC's- (substance of very high concern) >0.1%w/w. It is our policy to monitor all new and existing		
FOOD CONTACT 2002/72/EC	VICTREX PEEK - unfilled, unfilled black 903, GLxx, GLxx Blk, and VICTREX HT-unfilled comply with		suppliers to ensure we do not supply material containing substances of very high concern >0.1%w/w.		
	the regulations of the European Commission Directive 2002/72/EC and subsequent amendments up to 975/2009, and including the regulation (EC) No 1935/2004, both in their relevant versions on materials and articles intended to come into contact with food (note -	RoHS	VICTREX PEEK, VICTREX HT, VICTREX ST and Compounds conform to the requirements of Directive 2002/95/EC (27th January 2003) on RoHS-(the restriction of the use of certain hazardous substances in electrical and electronic equipment).		
FDA 21 CFR 177.2415	"xx" denotes addition level of filler). VICTREX PEEK - unfilled, unfilled black 903 GLxx, GLxx Blk, CAxx, FE20, FW30, and VICTREX HT- unfilled comply with the compositional requirements of the regulations for plastics for	ELV	VICTREX PEEK, VICTREX HT, VICTREX ST and Compounds conform to the requirements of Directive 2000/53/EC for ELV-(end of life vehicles). Covering vehicles and end-of life vehicles, including their components and materials.		
	food contact FDA 21 CFR 177.2415, of the Food and Drug Administration (FDA) of the United States of America.	WEEE	Victrex materials, in conjunction with the Directive for RoHS, conform to the requirements of the European Directive 2002-96-EC for WEEE-		
3A Sanitary Standard for Multiple Use Plastic Materials	VICTREX PEEK unfilled (all grades based on 90, 150, 380 and 450 viscosities), APTIV 1000 and 2000 Series extruded films, and VICOTE 700 Series milled powders.	FM 4910 Approval	(waste electrical and electronic equipment). VICTREX PEEK-unfilled conforms to the requirements of the American National Standard		
FLAMMABILITY UL94	VICTREX PAEK polymers and compounds conform		for Cleanroom Materials Flammability Test Protocol, ANSI/FM 4910. FM 4910 was developed to meet the need in the semiconductor industry		
0101	to the general requirements of UL (Underwriters Laboratory) Flammability Standard UL94. Grade specific details are available upon request from	MITI Approval	for fire-safe materials. VICTREX PEEK has been approved to the MITI- (Ministry of Trade and Industry).		
	Victrex plc or through the UL website under reference QMFZ2.E161131.	Environmental Policy	Victrex has an environmental policy and operates to an operating permit (reference number BU5640IA) issued and audited by the UK Environment Agency. We also have an internal environmental management system which is audited as part of our ISO 9001:2008 registration.		

Victrex Polymer Solutions is constantly exploring new applications for our PAEK-based products, which is continuously increasing the number of approvals and specifications for our products.

							Unfilled
	Condition	Test Method	Units	PEEK	PEEK	PEEK	PEEK
				90G	151G	381G	450G
Mechanical Properties							
Tensile Strength	Yield, 73°F	ISO 527	psi	16,000	16,000	14,500	14,500
	Break, 73°F						
	Break, 257°F						
	Break, 347°F						
	Break, 527°F						
Tensile Elongation	73°F	ISO 527	%	15	25	40	45
Tensile Modulus	73°F	ISO 527	psi	540,000	540,000	540,000	540,000
Flexural Strength	73°F	ISO 178	psi	26,100	25,400	24,700	23,900
	257°F			13,800	13,100	13,100	12,900
	347°F			2,900	2,800	2,600	2,600
	527°F			2,000	1,900	1,900	1,900
Flexural Modulus	73°F	ISO 178	psi	620,000	620,000	610,000	590,000
Compressive Strength	73°F	ISO 604	psi	17,400	17,400	17,400	17,400
	248°F			10,200	10,200	10,200	10,200
	392°F						
	482°F						
Charpy Impact Strength	Notched, 73°F	ISO 179/1eA	ft-lb/in ²	1.9	1.9	2.9	3.3
	Unnotched, 73°F	ISO 179/1U		no break	no break	no break	no break
Izod Impact Strength	Notched, 73°F	ISO 180/A	ft-lb/in ²	2.1	2.4	3.1	3.6
	Unnotched, 73°F	ISO 180/U		no break	no break	no break	no break
Thermal Properties							
Melting Point		ISO 3146	°F	649	649	649	649
Glass Transition (T _g)	Onset	ISO 3146	°F	289	289	289	289
Coefficient of Thermal Expansion	Along flow <t<sub>g</t<sub>	ISO 11359	ppm/°F	25	25	25	25
	Average <t<sub>g</t<sub>			31	31	31	31
	Along flow >T _g			67	67	67	67
	Along flow >T _g Average >T _g			67 78	67 78	67 78	67 78
Heat Deflection Temperature	Along flow >T _g Average >T _g 260 psi	ISO 75A-f	°F	67 78 313	67 78 313	67 78 306	67 78 306
Heat Deflection Temperature Thermal Conductivity	Along flow >T _g Average >T _g 260 psi 73°F	ISO/CD 22007-4	W/mK	67 78	67 78 313 0.29	67 78 306 0.29	67 78 306 0.29
	Along flow >T _g Average >T _g 260 psi 73°F Electrical			67 78 313	67 78 313 0.29 260	67 78 306 0.29 260	67 78 306 0.29 260
Thermal Conductivity	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact	ISO/CD 22007-4	W/mK	67 78 313	67 78 313 0.29 260 240	67 78 306 0.29 260 240	67 78 306 0.29 260 240
Thermal Conductivity RTI	Along flow >T _g Average >T _g 260 psi 73°F Electrical	ISO/CD 22007-4	W/mK	67 78 313	67 78 313 0.29 260	67 78 306 0.29 260	67 78 306 0.29 260
Thermal Conductivity RTI Flow Properties	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact	ISO/CD 22007-4 UL 746B	W/mK °C	67 78 313 0.29	67 78 313 0.29 260 240 180	67 78 306 0.29 260 240 180	67 78 306 0.29 260 240 180
Thermal Conductivity RTI	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F	ISO/CD 22007-4	W/mK	67 78 313	67 78 313 0.29 260 240	67 78 306 0.29 260 240	67 78 306 0.29 260 240
Thermal Conductivity RTI Flow Properties Melt Viscosity	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact	ISO/CD 22007-4 UL 746B	W/mK °C	67 78 313 0.29	67 78 313 0.29 260 240 180	67 78 306 0.29 260 240 180	67 78 306 0.29 260 240 180
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F	ISO/CD 22007-4 UL 746B ISO 11443	W/mK °C	67 78 313 0.29 900	67 78 313 0.29 260 240 180 1300	67 78 306 0.29 260 240 180 3000	67 78 306 0.29 260 240 180 3500
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F 73°F	ISO/CD 22007-4 UL 746B ISO 11443 ISO 1143	W/mK °C poise	67 78 313 0.29 900 1.30	67 78 313 0.29 260 240 180 1300	67 78 306 0.29 260 240 180 3000	67 78 306 0.29 260 240 180 3500
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F	ISO/CD 22007-4 UL 746B ISO 11443	W/mK °C	67 78 313 0.29 900	67 78 313 0.29 260 240 180 1300	67 78 306 0.29 260 240 180 3000	67 78 306 0.29 260 240 180 3500
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density Electrical Properties	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F 73°F 73°F	ISO/CD 22007-4 UL 746B ISO 11443 ISO 1183 ISO 1183	W/mK °C poise Ib/in ³	67 78 313 0.29 900 1.30 0.047	67 78 313 0.29 260 240 180 1300 1.30 0.047	67 78 306 0.29 260 240 180 3000 1.30 0.047	67 78 306 0.29 260 240 180 3500 1.30 0.047
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density Electrical Properties Dielectric Strength	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F 73°F 73°F 73°F 0.1 inch thickness	ISO/CD 22007-4 UL 746B ISO 11443 ISO 11443 ISO 1183 ISO 1183 ISO 1183	W/mK °C poise lb/in³	67 78 313 0.29 900 1.30 0.047 630	67 78 313 0.29 260 240 180 1300 1.30 0.047 630	67 78 306 0.29 260 240 180 3000 1.30 0.047 630	67 78 306 0.29 260 240 180 3500 1.30 0.047 630
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density Electrical Properties Dielectric Strength Comparative Tracking Index	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F 73°F 73°F 73°F 0.1 inch thickness 73°F	ISO/CD 22007-4 UL 746B ISO 11443 ISO 11443 ISO 1183 ISO 1183 ISO 1183 IEC 60243-1 IEC 60112	W/mK °C poise Ib/in ³ V/mil V	67 78 313 0.29 900 1.30 0.047 630 150	67 78 313 0.29 260 240 180 1300 1300 1300 630 150	67 78 306 0.29 260 240 180 3000 1.30 0.047 630 150	67 78 306 0.29 260 240 180 3500 1.30 0.047 630 150
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density Electrical Properties Dielectric Strength Comparative Tracking Index Loss Tangent	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F 73°F 73°F 0.1 inch thickness 73°F 73°F, 1MHz	ISO/CD 22007-4 UL 746B ISO 11443 ISO 11443 ISO 1183 ISO 1183 ISO 1183 ISO 1183 IEC 60243-1 IEC 60112 IEC 60250	W/mK °C poise Ib/in ³ V/mil V/mil	67 78 313 0.29 900 1.30 0.047 630 150 0.003	67 78 313 0.29 260 240 180 1300 1300 1300 630 150 0.003	67 78 306 0.29 260 240 180 3000 1.30 0.047 630 150 0.003	67 78 306 0.29 260 240 180 3500 1.30 0.047 630 150 0.003
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density Electrical Properties Dielectric Strength Comparative Tracking Index Loss Tangent Dielectric Constant	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F 73°F 73°F 0.1 inch thickness 73°F 73°F, 1MHz 73°F, 1MHz	ISO/CD 22007-4 UL 746B ISO 11443 ISO 11443 ISO 1183 ISO 1183 ISO 1183 IEC 60243-1 IEC 60112 IEC 60250 IEC 60250	W/mK °C poise poise U/mil V/mil V/mil V	67 78 313 0.29 900 1.30 0.047 630 150 0.003 3.3	67 78 313 0.29 260 240 180 1300 1300 .0.047 630 150 0.003 3.3	67 78 306 0.29 260 240 180 3000 1.30 0.047 630 150 0.003 3.2	67 78 306 0.29 260 240 180 3500
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density Electrical Properties Dielectric Strength Comparative Tracking Index Loss Tangent Dielectric Constant Volume Resistivity	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F 790°F 73°F 73°F 73°F 73°F 73°F, 1MHz 73°F, 1MHz 73°F, 1kHz 73°F	ISO/CD 22007-4 UL 746B ISO 11443 ISO 11443 ISO 1183 ISO 1183 ISO 1183 IEC 60243-1 IEC 60112 IEC 60250	W/mK °C poise Ib/in ³ V/mil V/mil	67 78 313 0.29 900 1.30 0.047 630 150 0.003	67 78 313 0.29 260 240 180 1300 1300 1300 630 150 0.003	67 78 306 0.29 260 240 180 3000 1.30 0.047 630 150 0.003	67 78 306 0.29 260 240 180 3500 1.30 0.047 630 150 0.003
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density Electrical Properties Dielectric Strength Comparative Tracking Index Loss Tangent Dielectric Constant Volume Resistivity Recommended Processing Condition	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F 73°F 73°F 0.1 inch thickness 73°F 73°F, 1MHz 73°F, 1MHz 73°F, 1kHz 73°F	ISO/CD 22007-4 UL 746B ISO 11443 ISO 11443 ISO 1183 ISO 1183 ISO 1183 IEC 60243-1 IEC 60112 IEC 60250 IEC 60250	W/mK °C poise b/in ³ V/mil V/mil V V n/a n/a Ω-in	67 78 313 0.29 900 1.30 0.047 630 150 0.003 3.3 10 ¹⁶	67 78 313 0.29 260 240 180 1300 1300 630 150 0.003 3.3 10 ¹⁶	67 78 306 0.29 260 240 180 3000 1.30 0.047 630 150 0.003 3.2 10 ¹⁶	67 78 306 0.29 260 240 180 3500 180 3500 180 630 150 0.047 630 150 0.003 2.8 10 ¹⁶
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density Electrical Properties Dielectric Strength Comparative Tracking Index Loss Tangent Dielectric Constant Volume Resistivity Recommended Processing Condition Temperature Settings	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F 790°F 73°F 73°F 73°F 73°F 73°F, 1MHz 73°F, 1MHz 73°F, 1kHz 73°F	ISO/CD 22007-4 UL 746B ISO 11443 ISO 11443 ISO 1183 ISO 1183 ISO 1183 IEC 60243-1 IEC 60112 IEC 60250 IEC 60250	W/mK °C poise boise boise v v v v v v v n/a n/a n/a Ω-in	67 78 313 0.29 900 900 1.30 0.047 630 150 0.003 3.3 10 ¹⁶	67 78 313 0.29 260 240 180 1300 1300 1300 630 150 0.003 3.3 10 ¹⁶	67 78 306 0.29 260 240 180 3000 180 3000 180 630 150 0.003 3.2 10 ¹⁶	67 78 306 0.29 260 240 180 3500 3500 1.30 0.047 630 150 0.003 2.8 10 ¹⁶
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density Electrical Properties Dielectric Strength Comparative Tracking Index Loss Tangent Dielectric Constant Volume Resistivity Recommended Processing Condition Temperature Settings Mold Temperature (max 480°F)	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F 73°F 73°F 73°F 73°F 73°F 73°F, 1MHz 73°F, 1MHz 73°F, 1kHz 73°F nozzle - hopper	ISO/CD 22007-4 UL 746B ISO 11443 ISO 11443 ISO 1183 ISO 1183 ISO 1183 IEC 60243-1 IEC 60112 IEC 60250 IEC 60250	W/mK °C poise poise U b/in³ V/mil V/mil V v n/a n/a n/a Ω-in	67 78 313 0.29 900 900 1.30 0.047 630 150 0.003 3.3 10 ¹⁶ 680-660 320-390	67 78 313 0.29 260 240 180 1300 1300 630 630 150 0.003 3.3 10 ¹⁶ 690-660 320-390	67 78 306 0.29 260 240 180 3000 180 630 150 0.047 630 150 0.003 3.2 10 ¹⁶ 700-660 340-390	67 78 306 0.29 260 240 180 3500 3500 0.047 630 630 150 0.003 2.8 10 ¹⁶ 705-670 340-390
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density Electrical Properties Dielectric Strength Comparative Tracking Index Loss Tangent Dielectric Constant Volume Resistivity Recommended Processing Condition Temperature Settings	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F 73°F 73°F 73°F 73°F 73°F 73°F, 1MHz 73°F, 1MHz 73°F, 1kHz 73°F nozzle - hopper 0.04 inch wall thickness	ISO/CD 22007-4 UL 746B ISO 11443 ISO 11443 ISO 1183 ISO 1183 ISO 1183 IEC 60243-1 IEC 60112 IEC 60250 IEC 60250	W/mK °C poise boise boise v v v v v v v n/a n/a n/a Ω-in	67 78 313 0.29 900 900 1.30 0.047 630 150 0.003 3.3 10 ¹⁶	67 78 313 0.29 260 240 180 1300 1300 1300 630 150 0.003 3.3 10 ¹⁶	67 78 306 0.29 260 240 180 3000 180 3000 180 630 150 0.003 3.2 10 ¹⁶	67 78 306 0.29 260 240 180 3500 3500 1.30 0.047 630 150 0.003 2.8 10 ¹⁶
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density Electrical Properties Dielectric Strength Comparative Tracking Index Loss Tangent Dielectric Constant Volume Resistivity Recommended Processing Condition Temperature Settings Mold Temperature (max 480°F) Spiral Flow	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact Mechanical with impact 750°F 790°F 73°F 73°F 73°F 73°F 73°F 73°F, 1MHz 73°F, 1MHz 73°F, 1MHz 73°F, 1MHz 73°F, 1MHz 73°F 0.04 inch wall thickness 0.12 inch wall thickness	ISO/CD 22007-4 UL 746B ISO 11443 ISO 11443 ISO 1183 ISO 1183 ISO 1183 IEC 60243-1 IEC 60250 IEC 60250 IEC 60250 IEC 60093	W/mK °C poise boise boise v boise v boise v v v n v v n v v v v v v v v v v v v	67 78 313 0.29 900 1.30 0.047 630 150 0.003 3.3 10 ¹⁶ 680-660 320-390 9.6	67 78 313 0.29 260 240 180 1300 1300 630 150 0.047 630 150 0.003 3.3 10 ¹⁶ 690-660 320-390 8.7	67 78 306 0.29 260 240 180 3000 180 630 150 0.047 630 150 0.003 3.2 10 ¹⁶ 700-660 340-390 5.1	67 78 306 0.29 260 240 180 3500 3500 150 0.047 630 150 0.003 2.8 10 ¹⁶ 705-670 340-390 4.3
Thermal Conductivity RTI Flow Properties Melt Viscosity Other Properties Specific Gravity Density Electrical Properties Dielectric Strength Comparative Tracking Index Loss Tangent Dielectric Constant Volume Resistivity Recommended Processing Condition Temperature Settings Mold Temperature (max 480°F)	Along flow >T _g Average >T _g 260 psi 73°F Electrical Mechanical without impact Mechanical with impact 750°F 790°F 73°F 73°F 73°F 73°F 73°F 73°F, 1MHz 73°F, 1MHz 73°F, 1kHz 73°F nozzle - hopper 0.04 inch wall thickness	ISO/CD 22007-4 UL 746B ISO 11443 ISO 11443 ISO 1183 ISO 1183 ISO 1183 IEC 60243-1 IEC 60112 IEC 60250 IEC 60250	W/mK °C poise poise U b/in³ V/mil V/mil V v n/a n/a n/a Ω-in	67 78 313 0.29 900 900 1.30 0.047 630 150 0.003 3.3 10 ¹⁶ 680-660 320-390	67 78 313 0.29 260 240 180 1300 1300 630 630 150 0.003 3.3 10 ¹⁶ 690-660 320-390	67 78 306 0.29 260 240 180 3000 180 630 150 0.047 630 150 0.003 3.2 10 ¹⁶ 700-660 340-390	67 78 306 0.29 260 240 180 3500 3500 0.047 630 630 150 0.003 2.8 10 ¹⁶ 705-670 340-390

			GI	ass-Fiber Reinf	orced					Carbon-Fiber	Reinf
HT	ST	PEEK	PEEK	PEEK	HT	ST	PEEK	PEEK	PEEK	HT	
G22	G45	90GL30	150GL30	450GL30	22GL30	45GL30	90CA30	150CA30	450CA30	22CA30	
16 700	16 700										
16,700	16,700	27,600	27,600	26,100	29,000	29,000	37,700	37,700	37,700	37,700	
		18,900	16,700	16,700	18,100	18,900	26,100	21,800	23,200	24,700	
		11,600	10,200	8,700	10,900	11,600	16,000	13,800	12,300	16,000	
		6,500	5,800	5,100	8,000	7,300	9,400	8,000	7,300	10,200	
20	20	2.3	2.5	2.7	2.8	2.5	1.3	1.5	1.7	1.6	
540,000	620,000	1,700,000	1,700,000	1,700,000	1,700,000	1,700,000	3,900,000	3,800,000	3,600,000	3,800,000	
26,800	26,100	42,100	40,600	39,200	43,500	43,500	52,000	52,200	55,100	53,700	
16,000	16,000	28,000	28,000	28,000	30,000	29,000	36,000	36,000	36,000	35,000	
4,600	5,200	12,000	12,000	12,000	17,000	18,000	17,000	17,000	17,000	25,000	
2,300	3,000	7,300	7,300	7,300	12,000	11,000	8,700	8,700	8,700	13,100	
610,000	590,000	1,740,000	1,670,000	1,640,000	1,600,000	1,600,000	3,500,000	3,300,000	3,300,000	3,300,000	
20,300	21,000	36,000	36,000	36,000	42,000	42,000	44,000	44,000	44,000	44,000	
13,000	13,000	23,000	23,000	23,000	26,000	27,600	29,000	29,000	29,000	30,000	
4,400	5,100	8,000	8,000	8,000	10,900 7,300	10,900 7,300	10,200	10,200	10,200	14,000 9,400	
1.8	1.9	3.6	3.6	3.8	4.3	4.5	2.9	2.9	3.3	3.1	
no break	no break	21	26	26	33	33	2.9	2.9	21	21	
2.4	2.9	4.0	4.3	4.8	5.2	5.2	2.9	3.6	4.5	4.0	
no break	no break	1.0	24	29	33	33	19	19	21	21	
703	729	649	649	649	703	729	649	649	649	703	
306	324	289	289	289	306	324	289	289	289	306	
25	25	11	11	10	11	12	3	3	3	3	
31	31	25	25	25	25	22	22	22	22	19	
42	58	25 11	25 11	25 10	25 14	22 13	22 3	22 3	22 3	19 3	
42 72	58 69	25 11 61	25 11 61	25 10 61	25 14 61	22 13 56	22 3 50	22 3 56	22 3 56	19 3 50	
42 72 325	58 69 342	25 11 61 635	25 11 61 635	25 10 61 622	25 14 61 680	22 13 56 716	22 3 50 648	22 3 56 642	22 3 56 637	19 3 50 694	
42 72	58 69	25 11 61	25 11 61 635 0.30	25 10 61 622 0.30	25 14 61	22 13 56	22 3 50	22 3 56	22 3 56	19 3 50	
42 72 325	58 69 342	25 11 61 635	25 11 61 635 0.30 240	25 10 61 622 0.30 240	25 14 61 680	22 13 56 716	22 3 50 648	22 3 56 642 0.95	22 3 56 637 0.95	19 3 50 694	
42 72 325	58 69 342	25 11 61 635	25 11 61 635 0.30	25 10 61 622 0.30	25 14 61 680	22 13 56 716	22 3 50 648	22 3 56 642	22 3 56 637	19 3 50 694	
42 72 325	58 69 342	25 11 61 635	25 11 61 635 0.30 240 240	25 10 61 622 0.30 240 240	25 14 61 680	22 13 56 716	22 3 50 648	22 3 56 642 0.95 240	22 3 56 637 0.95 240	19 3 50 694	
42 72 325	58 69 342	25 11 61 635	25 11 61 635 0.30 240 240	25 10 61 622 0.30 240 240	25 14 61 680	22 13 56 716	22 3 50 648	22 3 56 642 0.95 240	22 3 56 637 0.95 240	19 3 50 694	
42 72 325 0.29	58 69 342	25 11 61 635 0.30	25 11 61 635 0.30 240 240 220	25 10 61 622 0.30 240 240 220	25 14 61 680 0.30	22 13 56 716	22 3 50 648 0.95	22 3 56 642 0.95 240 200	22 3 56 637 0.95 240 200	19 3 50 694 0.95	
42 72 325 0.29	58 69 342 0.29	25 11 61 635 0.30	25 11 61 635 0.30 240 240 220	25 10 61 622 0.30 240 240 220	25 14 61 680 0.30	22 13 56 716 0.30	22 3 50 648 0.95	22 3 56 642 0.95 240 200	22 3 56 637 0.95 240 200	19 3 50 694 0.95	
42 72 325 0.29 1900 1.30	58 69 342 0.29 2200 1.30	25 11 61 635 0.30 2200 1.52	25 11 61 635 0.30 240 240 220 2800	25 10 61 622 0.30 240 240 220 5600	25 14 61 680 0.30 5000	22 13 56 716 0.30 5500	22 3 50 648 0.95 2600	22 3 56 642 0.95 240 200 3200	22 3 56 637 0.95 240 200 6750	19 3 50 694 0.95 5500	
42 72 325 0.29 1900	58 69 342 0.29 2200	25 11 61 635 0.30 2200	25 11 61 635 0.30 240 240 220 2800	25 10 61 622 0.30 240 240 220 5600	25 14 61 680 0.30 5000	22 13 56 716 0.30 5500	22 3 50 648 0.95 2600	22 3 56 642 0.95 240 200 3200	22 3 56 637 0.95 240 200 6750	19 3 50 694 0.95 5500	
42 72 325 0.29 1900 1.30 0.047	58 69 342 0.29 2200 1.30 0.047	25 11 61 635 0.30 2200 2200 1.52 0.055	25 11 61 635 0.30 240 240 220 2800 1.52 0.055	25 10 61 622 0.30 240 240 220 5600 1.51 0.055	25 14 61 680 0.30 5000 1.53 0.055	22 13 56 716 0.30 5500 1.53 0.055	22 3 50 648 0.95 2600	22 3 56 642 0.95 240 200 3200	22 3 56 637 0.95 240 200 6750	19 3 50 694 0.95 5500	
42 72 325 0.29 1900 1.30 0.047 670	58 69 342 0.29 2200 1.30 0.047 830	25 11 61 635 0.30 2200 2200 1.52 0.055	25 11 61 635 0.30 240 240 220 2800 1.52 0.055	25 10 61 622 0.30 240 220 5600 1.51 0.055 790	25 14 61 680 0.30 5000 1.53 0.055 630	22 13 56 716 0.30 5500 1.53 0.055 750	22 3 50 648 0.95 2600	22 3 56 642 0.95 240 200 3200	22 3 56 637 0.95 240 200 6750	19 3 50 694 0.95 5500	
42 72 325 0.29 1900 1.30 0.047 670 150	58 69 342 0.29 2200 1.30 0.047 830 150	25 11 61 635 0.30 2200 2200 1.52 0.055 670 150	25 11 61 635 0.30 240 240 220 2800 2800 1.52 0.055 670 150	25 10 61 622 0.30 240 220 5600 5600 1.51 0.055 790 150	25 14 61 680 0.30 5000 1.53 0.055 630 150	22 13 56 716 0.30 5500 1.53 0.055 750 150	22 3 50 648 0.95 2600	22 3 56 642 0.95 240 200 3200	22 3 56 637 0.95 240 200 6750	19 3 50 694 0.95 5500	
42 72 325 0.29 1900 1.30 0.047 670	58 69 342 0.29 2200 1.30 0.047 830 150 0.004	25 11 61 635 0.30 2200 2200 1.52 0.055 670 150 0.004	25 11 61 635 0.30 240 220 2800 2800 1.52 0.055 670 150 0.004	25 10 61 622 0.30 240 240 220 5600 1.51 0.055 790 150 0.005	25 14 61 680 0.30 5000 5000 1.53 0.055 630 150 0.005	22 13 56 716 0.30 5500 1.53 0.055 750 150 0.004	22 3 50 648 0.95 2600	22 3 56 642 0.95 240 200 3200	22 3 56 637 0.95 240 200 6750	19 3 50 694 0.95 5500	
42 72 325 0.29 1900 1.30 0.047 670 150	58 69 342 0.29 2200 1.30 0.047 830 150	25 11 61 635 0.30 2200 2200 1.52 0.055 670 150	25 11 61 635 0.30 240 240 220 2800 2800 1.52 0.055 670 150	25 10 61 622 0.30 240 220 5600 5600 1.51 0.055 790 150	25 14 61 680 0.30 5000 1.53 0.055 630 150	22 13 56 716 0.30 5500 1.53 0.055 750 150	22 3 50 648 0.95 2600	22 3 56 642 0.95 240 200 3200	22 3 56 637 0.95 240 200 6750	19 3 50 694 0.95 5500	
42 72 325 0.29 1900 1.30 0.047 670 150 0.0035	58 69 342 0.29 2200 1.30 0.047 830 150 0.004 3.0	25 11 61 635 0.30 2200 2200 1.52 0.055 670 150 0.004 3.3	25 11 61 635 0.30 240 240 220 2800 2800 1.52 0.055 670 150 0.004 3.3	25 10 61 622 0.30 240 220 5600 1.51 0.055 790 150 0.005 3.2	25 14 61 680 0.30 5000 1.53 0.055 630 150 0.005 3.2	22 13 56 716 0.30 5500 1.53 0.055 750 150 0.004 3.3	22 3 50 648 0.95 2600 1.40 0.051	22 3 56 642 0.95 240 200 3200 1.40 0.051	22 3 56 637 0.95 240 200 6750 1.40 0.051	19 3 50 694 0.95 5500 1.41 0.051	
42 72 325 0.29 1900 1.30 0.047 670 150 0.0035	58 69 342 0.29 2200 1.30 0.047 830 150 0.004 3.0	25 11 61 635 0.30 2200 2200 1.52 0.055 670 150 0.004 3.3	25 11 61 635 0.30 240 240 220 2800 2800 1.52 0.055 670 150 0.004 3.3	25 10 61 622 0.30 240 240 220 5600 1.51 0.055 790 150 0.005 3.2	25 14 61 680 0.30 5000 1.53 0.055 630 150 0.005 3.2	22 13 56 716 0.30 5500 1.53 0.055 750 150 0.004 3.3	22 3 50 648 0.95 2600 1.40 0.051	22 3 56 642 0.95 240 200 3200 1.40 0.051	22 3 56 637 0.95 240 200 6750 1.40 0.051	19 3 50 694 0.95 5500 1.41 0.051	
42 72 325 0.29 1900 1900 1.30 0.047 670 150 0.0035 670 150 0.0035	58 69 342 0.29 2200 1.30 0.047 830 150 0.004 3.0 10 ¹⁶ 745-705 390-430	25 11 61 635 0.30 2200 2200 10 2200 10 10 10 10 10 10 10 10 10 10 10 10 1	25 11 61 635 0.30 240 240 220 2800 2800 1.52 0.055 670 150 0.004 3.3 10 ¹⁶ 715-680 340-390	25 10 61 622 0.30 240 240 220 5600 5600 150 0.055 790 150 0.005 3.2 10 ¹⁶ 725-680 355-390	25 14 61 680 0.30 5000 5000 1.53 0.055 630 150 0.005 3.2 10 ¹⁶ 745-705 370-420	22 13 56 716 0.30 5500 1.53 0.055 750 150 0.004 3.3 10 ¹⁶ 7770-725 390-430	22 3 50 648 0.95 2600 1.40 0.051 4.40 0.0510000000000	22 3 56 642 0.95 240 200 3200 3200 1.40 0.051 4 0.051 10 ⁵ 725-680 355-410	22 3 56 637 0.95 240 200 6750 6750 1.40 0.051 4 0.051 4 0.051 10 ⁵	19 3 50 694 0.95 5500 1.41 0.051 1.41 0.051 10 ⁵ 760-715 370-420	
42 72 325 0.29 1900 1900 1.30 0.047 670 150 0.0035 10 ¹⁶	58 69 342 0.29 2200 1.30 0.047 830 150 0.004 3.0 10 ¹⁶ 745-705 390-430 6.3	25 11 61 635 0.30 2200 2200 1 2 2200 1 2 2200 1 2 2200 2 2 200 2 2 2 2	25 11 61 635 0.30 240 220 2800 2800 1.52 0.055 670 150 0.004 3.3 10 ¹⁶	25 10 61 622 0.30 240 220 5600 5600 150 0.055 790 150 0.005 3.2 10 ¹⁶ 725-680 355-390 3.3	25 14 61 680 0.30 5000 5000 1.53 0.055 630 150 0.005 3.2 10 ¹⁶	22 13 56 716 0.30 5500 1.53 0.055 750 150 0.004 3.3 10 ¹⁶ 770-725 390-430 3.9	22 3 50 648 0.95 2600 1.40 0.051 1.40 0.051	22 3 56 642 0.95 240 200 3200 1.40 0.051	22 3 56 637 0.95 240 200 6750 6750 0.051 0.05 0.05	19 3 50 694 0.95 5500 1.41 0.051 10 ⁵ 760-715	
42 72 325 0.29 1900 1900 1900 670 150 0.047 670 150 0.0035 10 ¹⁶ 745-705 370-420 7.9	58 69 342 0.29 2200 1.30 0.047 830 150 0.004 3.0 150 0.004 3.0 10 ¹⁶ 745-705 390-430 6.3 27	25 11 61 635 0.30 2200 2200 1 2 2200 1 2 2200 1 2 2 200 1 2 2 200 1 2 2 200 2 2 2 2	25 11 61 635 0.30 240 220 2800 2800 1.52 0.055 670 150 0.004 3.3 10 ¹⁶ 715-680 340-390 5.9	25 10 61 622 0.30 240 240 220 5600 5600 150 0.055 790 150 0.005 3.2 10 ¹⁶ 725-680 355-390 3.3 16	25 14 61 680 0.30 5000 5000 1.53 0.055 630 150 0.005 3.2 10 ¹⁶ 745-705 370-420 4.1	22 13 56 716 0.30 5500 1.53 0.055 750 150 0.004 3.3 10 ¹⁶ 770-725 390-430 3.9 17	22 3 50 648 0.95 2600 1.40 0.051 1.40 0.051 10 ⁵ 715-680 340-390 5.1	22 3 56 642 0.95 240 200 3200 3200 1.40 0.051 0.0555 0.055 0.055 0.0555 0.055	22 3 56 637 0.95 240 200 6750 6750 0 0.051 0 0.051 0 0 0.051 0 0 0.051 0 0 0.051 0 0 0.051 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	19 3 50 694 0.95 5500 1.41 0.051 1.41 0.051 10 ⁵ 760-715 370-420 3.1	
42 72 325 0.29 1900 1900 1.30 0.047 670 150 0.0035 670 150 0.0035	58 69 342 0.29 2200 1.30 0.047 830 150 0.004 3.0 10 ¹⁶ 745-705 390-430 6.3	25 11 61 635 0.30 2200 2200 10 2200 10 10 10 10 10 10 10 10 10 10 10 10 1	25 11 61 635 0.30 240 240 220 2800 2800 1.52 0.055 670 150 0.004 3.3 10 ¹⁶ 715-680 340-390	25 10 61 622 0.30 240 220 5600 5600 150 0.055 790 150 0.005 3.2 10 ¹⁶ 725-680 355-390 3.3	25 14 61 680 0.30 5000 5000 1.53 0.055 630 150 0.005 3.2 10 ¹⁶ 745-705 370-420	22 13 56 716 0.30 5500 1.53 0.055 750 150 0.004 3.3 10 ¹⁶ 770-725 390-430 3.9	22 3 50 648 0.95 2600 1.40 0.051 4.40 0.0510000000000	22 3 56 642 0.95 240 200 3200 3200 1.40 0.051 4 0.051 10 ⁵ 725-680 355-410	22 3 56 637 0.95 240 200 6750 6750 0.051 0.05 0.05	19 3 50 694 0.95 5500 1.41 0.051 1.41 0.051 10 ⁵ 760-715 370-420	

orced	Friction and Wear Grades							Specialty Proc	lucts
ST 45CA30	PEEK 90HMF20	PEEK 90HMF40	PEEK 150FC30	PEEK 450FC30	PEEK 150FW30	PEEK 450FE20	WG101	WG102	ESD101
									.=
39,200	40,600	47,900	21,800	20,300	26,100	11,300	26,100	27,600	17,400
26,100	27,600	31,900	14,500	13,800			18,100	18,900	
17,400	17,400	21,000	9,400	8,000			12,300	12,300	
10,200	11,600	12,300	5,100	5,100		25	8,000	8,000	4.5
1.7	1.9	1.2	2.0	2.2	1.8	25	1.9	1.9	1.5
3,600,000	3,200,000	6,500,000	1,800,000	1,800,000	2,200,000	420,000	2,800,000	2,800,000	1,700,000
55,100	58,000	70,000	32,000	33,000	39,000	18,000	41,000	42,000	28,000
42,000	42,000	51,000					32,000	32,000	
28,000	26,000	32,000					20,000	21,000	
14,500	14,500	17,400	4 700 000	4 700 000	445		10,200	10,900	40.5
3,200,000	2,900,000	5,400,000	1,700,000	1,700,000	14.5	3.2	17	17	10.5
45,000	39,000	45,000	25,000	25,000		15,000	32,000	36,000	
30,000	29,000	36,000	16,000	16,000		9,400	23,000	25,000	
14,000	13,000	17,000					9,400	12,000	
9,400							6,500	8,000	
3.3	3.6	3.8	1.9	2.4			2.4	2.4	
24	29	29	14	17			17	17	
4.3	4.5	5.0	2.4	2.9	2.4	3.6	2.6	2.9	1.7
24	29	29	14	17	17	no break	17	17	12
729	640	640	640	649	640	640	640	702	640
	649	649	649		649	649	649	703	649
324 6	289	289	289 7	289 8	289	289 22	289 5	306	289
22	3				5		5 19	5	14 22
7	22	19 1	25 8	25 11	25 5	33 67		19	39
53	56	44	61	64	61	78	6 50	6 50	69
721	657	660	599	599	01	78	649	693	09
0.95	037	000	0.87	0.87			1.30	1.30	
0.55			0.07	0.87			1.50	1.50	
			240	240					
			180	180					
			100	100					
	2000	3300	2900	5500	2600	3400	3500	6000	2750
5600	2000	5500	2500	5500	2000	5-100	5500	5000	2750
1.41	1.37	1.45	1.45	1.45	1.43	1.40	1.44	1.44	1.65
0.051	0.049	0.052	0.052	0.052	0.052	0.051	0.052	0.052	0.060
						830			
						0.004			
						2.8			
10 ⁵	10 ⁵	10 ⁵	10 ⁸	10 ¹⁰	10 ⁷	10 ¹⁵	10 ⁶	10 ⁷	10 ⁸
780-735	725-680	725-680	715-680	725-680	725-680	705-670	735-700	770-735	725-680
390-445	355-390	375-390	340-390	340-390	340-390	340-390	355-410	370-420	355-430
3.5	7.1	3.9	5.1	3.1	6.5	5.1	5.3	3.3	
16				15				14	
0.1	0.0	0.0	0.2	0.3	0.1	1.2	0.0	0.1	0.4
0.7	0.6	0.4	0.7	0.7	0.6	1.7	0.5	0.6	0.5